具身智能 vs. 运动科技:一个让机器像人,一个把人变成机器?| 峰瑞报告
互动福利
你有运动习惯吗,是否有尝试过借助科技的力量来提高运动表现?欢迎在评论区留言,我们将随机挑选3位读者,送出《超越百岁:长寿的科学与艺术》一书。
若要弄清楚科技对竞技体育的价值,我们需要先了解一些运动科学的知识。通过下面这张结构图,我们可以一览运动的底层逻辑。
当我们开始做运动时,无论是跑步还是打球,大脑会先决定我们的行动目标,然后通过小脑指导我们的身体来实现这些目标。最后在执行层面,我们会调动底层的代谢系统、神经系统和肌骨系统来完成相应的动作。
具体来说,身体的供能系统为肌肉活动提供必需的氧气和营养素,小脑通过神经系统来控制肌肉收缩,从而产生我们期望的动作。在这个过程中,会涉及到生物能到机械能的转化,因此转化效率十分关键。
当我们的肌肉与骨骼做出相应的动作后,我们的身体会通过各种感官来感知自己、环境,以及对手的状态,并将这些信息反馈给大脑和小脑,从而有意识或无意识地调整下一步的动作。
最终,这一连串动作的综合结果,可能体现为百米赛跑的成绩、球赛的比分、跳跃的高度等运动成绩。
整个身体系统的运作机制,或许会让你联想起我们在《通往具身智能之路》报告中所讨论的内容。实际上,具身智能的发展,在一定程度上参照了人体运动的工作原理。
那么,面对人体这样一个复杂系统,科技如何帮助我们来提升运动表现呢?
我们可以类比另一个大家更为熟悉的复杂系统——工厂,来探讨它的优化过程。
接下来,我们将从装备与数字化这两个方面深入探讨,科技能为我们做什么,以及科技还将在哪些方面帮助人类突破运动极限。
在田径类运动赛场上,更加轻量化、弹性更好的跑鞋,散热更快的背心,展开了运动员之外的“第二赛场”。
射击服,通过结构与材料的优化,具备了更高的稳定性与更耐冲击。
球拍、滑雪板和赛艇装备朝着高强度和轻量化的方向不断进化。
自行车装备则在追求低风阻和轻量化的道路上不断前行……
抽象地看,所有运动装备,无论是我们穿戴的还是使用的,都可以视为人体各个器官和结构功能(肌骨系统、心血管、皮肤等)的延伸和强化。其根本目的是从生物力学角度提高机械能的转换效率,或从代谢系统角度实现稳定的能量供给和功率输出。
随着结构愈发复杂、材料更加多元,3D打印技术在运动装备的生产中开始扮演重要角色。运动员根据自身特点和需求来定制装备,不再是一件难事。
在运动装备中,服装与人体直接接触,对运动表现的影响至关重要。
曾经在北京奥运会上大放异彩的 Speedo FastSkin LZR Race 鲨鱼皮泳衣,其面料借鉴了鲨鱼皮表面的微观结构,模仿其鳞片状突起,减少了水的湍流和阻力,使水流更平滑地流经身体表面,从而达到减阻的目的。许多穿着这款泳衣的运动员都打破了世界纪录,但后来因其高成本导致的不公平竞争可能性,被国际泳联禁止使用。
这个例子充分展示了服装创新对提升运动表现的重要意义。
对于许多对速度和灵活度要求较高的运动项目,降低阻力是提高成绩的关键。这也解释了为什么许多运动都采用紧身服,因为足够贴身才能最大限度地降低风阻,当然这需要面料具有良好的弹力,以确保人体在高速运动中保持舒适。此外,许多紧身服采用无缝 3D 编织技术,也是为了减少服装表面的凸起和摩擦,进一步降低风阻,提高舒适度。
而对于射击这种追求稳定性的运动,服装的作用更多地体现在支撑方面。研发人员通过人体测量、姿态分析、材料研发、版型对比、力学关系等方式,采用特制的帆布和牛皮材料,实现了服装的高硬度、高缓弹、慢响应等力学特性。
紧身服、仿生鲨鱼皮泳衣、特制射击服等例子,都表明服装在生物力学方面发挥着重要作用。实际上,服装创新还能为人体的代谢系统提供支持,在体温管理、血液循环、肌肉保护等方面发挥巨大作用。
以体温管理为例,能量转化的损耗通常以热量形式散发,而皮肤排汗是人体散热的主要方式。在运动中,如果不能及时散热,会导致体温升高,影响运动能力,甚至引发中暑。或许大家衣柜里都有一件速干衣,它强调吸湿、导汗、快干,目的之一就是为了将体温保持在相对舒适的状态。
近年来,出现了许多体温管理的黑科技。在巴黎奥运会上,女子马拉松冠军哈桑和男子马拉松选手基普乔格都佩戴了 Omius 降温头带。这款头带采用了高导热的石墨材料、亲水涂层和孔洞结构,帮助马拉松选手在长距离跑步中保持清凉。
有趣的是,这种石墨材料此前广泛应用于 CPU 和服务器的散热,如今在运动行业发挥作用,是一种典型的跨学科应用。
类似的产业交叉案例还有很多。在医疗领域广泛应用于防止静脉曲张的技术,被 2XU、CEP、Compressport 等品牌运用到梯度压缩衣上,用来提升末端血液循环能力,从而达到抗疲劳、加速恢复的目的。
综上所述,在服装创新方面,我们可以看到科技如何从生物力学、运动能量代谢角度帮助人们提升运动表现。
具身智能致力于“将机器变成人”,而体育运动数字化的终极目标,则像是“把人变成机器”——将人进行数字孪生,尽可能全面地收集和监控个人与运动相关的关键指标,然后以优化这些指标为目标,为人们提供关于饮食、训练、休息等方面的建议。尽管最终可能会提高运动表现,但将人变成机器,听起来多少有些残酷。
那么,“把人变成机器”的过程是如何实现的呢?这就需要我们回到各个产业进行数字化发展的普遍规律。
几乎每个产业从经验化、标准化走向智能化的核心节点,都是“信息化”。在信息化之前,我们主要依靠常识来理解世界和产业。随着传感器技术的进步和数据的逐步结构化,许多产业进入了在线化、数据化乃至智能化的阶段。
各类传感器数据:对运动员的生理指标、生物力学指标等进行收集和监测; 各类竞赛相关数据:计时、计分、测量、技术统计等; 视频相关动态数据:基于比赛和训练的录像,来进行技术分析、战术分析(AI多模态理解)。
运动生理相关传感器的演进
用视频分析工具进行技术与战术分析
基于数据分析和决策指导的运动科学,涵盖训练、比赛、营养、恢复等多个方面。
以传感器的演进为例,各类传感器的应用,使得运动员各类指标的数字化得以真正实现。
常见的监测指标有两类,一类是代谢相关的指标,包括心率、静息心率、心率变异性、血氧、血糖等,用于监测运动强度、评估有氧能力、调整运动营养和赛中补给策略等;另一类是速度、距离、功率、脚部发力、运动轨迹等动态指标,更多地用于评估技术水平。
这背后涉及的测量方式多种多样,比如苹果手表里用到的心电ECG、光电PPG、GPS、气压计,以及CGM连续血糖监测、气体分析仪、加速度计、陀螺仪、磁力计、压力传感器等。
至于这些指标的具体应用,就涉及到一个重要的训练原则——周期性原则。
可以与智能手表和智能手机搭配使用的 Stryd 跑步传感器,能够精准(拟合)计算跑步功率及跑步动态。与配速相比,它对跑步强度的量化不易受到物理环境(风速、坡度等)的影响。此外,在本次奥运会上,有运动员左右脚分别绑了一个 Stryd,用于监测运动时双脚的运动表现是否平衡。
前面我们提到,具身智能或人形机器人的发展,在一定程度上参照了人体运动的工作原理。而科技将人体的运动进行数字化并优化运动表现时,仿佛是在把人变成机器。运动科技和人形机器人似乎是同一科技树上的两个分支。
值得注意的是,人形机器人行业正在努力研发的许多核心零部件,已经开始应用于体育产业。例如,衡量抓握力的触觉传感器,可以帮助运动员提升挥拍表现 —— 监测运动员每根手指、每个关节在挥拍动作中具体施加的压力,并基于此提供具体建议,以实现更好的击打水平。再如,集成了压力传感器、能够测量足底压力分布的智能鞋垫,可以用于跑步姿势分析和康复训练。
一方面,这些真人数据可以帮助运动员提升运动表现;另一方面,它们也许可以作为“养料” 帮助人形机器人进行模仿学习的训练(正如之前讨论具身智能时提到的“小模型”数据)。因为人类习得一项运动技能并形成肌肉记忆,与机器人的模仿学习类似,都离不开大量的模仿学习与训练,当然也少不了强化学习。
从这个角度看,研究如何将人体运动数字化,实际上也有助于我们更好地迭代具身智能。
最后简单总结一下,科技在竞技体育中的应用越来越广泛,主要体现在以下几个方面:
材料科学; 创新的结构及工艺方法; 各类高精度传感器技术; 数字化及 AI 技术。
这些科技的应用推动了运动装备的升级,提升了运动员的竞技水平,不断将人类的运动能力推向新的高度。我们相信这些技术也将逐渐应用于大众运动和健身领域,打开更广阔的市场。
推动这些运动科技发展的,不仅有体育品牌和科技公司(如 Nike、Adidas、Apple、Garmin),还有许多来自医疗、工业等其他产业的成果转化到了体育行业。当然,我们也看到了创业公司的探索和贡献。
随着人类突破极限变得越来越困难,运动领域也变得越来越卷,未来必然会有更多的创新机会出现。我们持续看好前沿技术在体育行业的应用,也期待未来国内能涌现出越来越多的运动科技公司。
同样值得期待的是,这些创新可能会赋能其他行业,碰撞出全新的科技应用 “火花”。
互动福利
你有运动习惯吗,是否有尝试过借助科技的力量来提高运动表现?欢迎在评论区留言,我们将随机挑选3位读者,送出《超越百岁:长寿的科学与艺术》一书。